If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x-969=0
a = 1; b = 20; c = -969;
Δ = b2-4ac
Δ = 202-4·1·(-969)
Δ = 4276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4276}=\sqrt{4*1069}=\sqrt{4}*\sqrt{1069}=2\sqrt{1069}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{1069}}{2*1}=\frac{-20-2\sqrt{1069}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{1069}}{2*1}=\frac{-20+2\sqrt{1069}}{2} $
| 6x+13=17x-34 | | 3x+25=2.3(6x-15) | | 0.7x+0.3x=0.5x+6 | | -6z+18=24+z | | 7n-14=6n | | x^2=1+Cx | | (x*0.08)-460=460 | | 460=(x*0.08)-420 | | 9^x+5=6566 | | (4x+2)(x^2+1)=0 | | 22^x=484 | | 2X^2-(m+1)X+m+1=0 | | 6f+10-8f=-10 | | 460=x*0.08 | | f=9/5(-10+32) | | f=9/5(-10)+32 | | X=7x+8x | | 4^(3x-1)=7 | | 43=11+x | | r/3-6=9 | | 8x=x+1 | | -2y+-2=-4y-12 | | 2x=x=12 | | 13=-7x+3x | | -9x-9=-7x-7 | | 36=1/2h(4+5) | | 7x-2x+x=-5 | | 16t^2+8t+2416=0 | | 9u+18=-5u+46 | | 4(m-1)=m+2 | | x+8/x=4/3 | | -5y-(-30)-10y=0 |